Please irradiate the TLDs during the period:

and return them to the address given in the covering letter. Timely response will improve the accuracy of your results. Should the TLDs arrive late, please irradiate them as soon as possible but no later than one month after their receipt. If you are unable to carry out the irradiation, please RETURN the TLD set, marking it "UNEXPOSED".

GENERAL INSTRUCTIONS

1. Irradiate the TLDs as instructed in the Technical Instruction (part B and C) as if they were inside a patient. Ensure that the treatment unit is functioning properly. Identify each TLD with irradiation conditions used (use labels or similar).

2. It is recommended to irradiate all TLDs in the same session. If this is not possible, please provide the irradiation dates for each TLD.

3. After the TLD irradiation, measure the beam output in the reference conditions (part D).

4. Fill in the Data Sheet. An evaluation of the TLD results is only possible if these forms are complete.

5. Return TLDs and the Data Sheet to the [DAN] within ONE WEEK after the irradiation.

SPECIAL NOTE: Please protect the TLD capsules from accidental irradiation, heat (e.g. sunshine) and excessive humidity during storage nor stored in a place where accidental exposure to radiation cannot be excluded.

CONFIDENTIALITY: The results of this TLD audit will be kept confidential by [DAN] and will not be disseminated without the written permission of the participating radiotherapy centre.

The TLD equipment sent to you represents a significant investment in cost, time and effort to the [DAN]. Failure to return the TLDs may be reported to your local authorities.
A. Aim of the MLC TLD audit

The purpose of the TLD audit is to check dosimetric data related to a radiotherapy treatment unit equipped with an MLC as used for patient treatments. The extension of the [DAN] programme to MLC fields, including irregular fields with and without wedges, takes into account the increasing use of these tools in conformal photon beam radiotherapy. An independent experimental verification of the dose calculated by treatment planning systems is an essential step in the improvement of quality assurance in radiotherapy and therefore an important extension of the [DAN] programme.

The absorbed dose to water at 10 cm depth for a reference 10 cm x 10 cm field along with six other fields set with the MLC whose shapes and dimensions are defined below will be checked using TLDs.

You are requested to calculate the number of monitor units required to irradiate the TLDs to the specified dose, according to the procedure used in your clinical practice for patients.

B. Preparation of the TLD holder, water phantom and therapy unit

1. Assemble the TLD holder, with the metal weight, as in FIG. 1.
2. Place the holder in a water tank on the treatment table. If needed, cut the holder legs (FIG. 1) to fit the holder into the tank. (Note that if you have no access to a dosimetry water phantom you can still use a large plastic bucket for example).
3. Set your therapy unit for a vertical beam, with a 10 cm x 10 cm field size (FIG. 2).
4. Align the holder tube with the central axis of the beam (FIG. 2).
5. Adjust the water level by filling the water tank exactly to the level of the top of the holder (FIG. 2). This will place TLD at a depth of 10 cm.
6. Adjust the table height so that the water surface is at the correct distance to the source, according to the set-up selected (SSD or isocentric, see FIG. 2).
7. Insert the TLD capsule to be irradiated into the hole of the TLD holder. Insert, position and remove the capsule as illustrated in FIG. 3. Never pull the capsule’s plug otherwise TLD may be opened under water. Place the capsule in the holder tube so that the centre of the capsule corresponds to the middle of the tube holder.

FIG. 2. Two alternative geometry set-ups for the TLD irradiation.

FIG. 3. Inserting, positioning and removing the TLD capsule.
C. Irradiation of TLD capsules

1. Calculate the number of monitor units to deliver a dose of 2 Gy to water at the centre of the TLD capsule (at 10 cm depth) for each field. This calculation must be made according to the method used in your daily practice for patient treatments. The list of fields is given in Table 1.

2. Before irradiation, recheck whether the alignment, field size, water level and distance are correct (FIG. 2).

3. Irradiate the TLD capsule with the number of monitor units as calculated above.

4. Remove the capsule from the holder, wipe it dry and place a label with the appropriate field number.

5. Repeat steps 2 to 4 for each field indicated in Table 1.

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Field Description</th>
<th>Depth in water</th>
<th>Irradiation distance</th>
<th>Field size (Maximum length and width)</th>
<th>Delivered dose</th>
<th>See figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beam output in reference conditions</td>
<td>10 cm SAD or SSD</td>
<td></td>
<td>10 cm x 10 cm</td>
<td>2 Gy</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Small square MLC field</td>
<td>10 cm SAD or SSD</td>
<td></td>
<td>5 cm x 5 cm with MLC</td>
<td>2 Gy</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>“Circular” MLC field</td>
<td>10 cm SAD or SSD</td>
<td></td>
<td>5.6 cm diameter with MLC</td>
<td>2 Gy</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>“Inverted Y” MLC field</td>
<td>10 cm SAD or SSD</td>
<td></td>
<td>15 cm x 10 cm with MLC</td>
<td>2 Gy</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>“Irregular” MLC field</td>
<td>10 cm SAD or SSD</td>
<td></td>
<td>10 cm x 7.5 cm with MLC</td>
<td>2 Gy</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>“Irregular” MLC field with wedge* filter</td>
<td>10 cm SAD or SSD</td>
<td></td>
<td>10 cm x 7.5 cm with MLC</td>
<td>2 Gy</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Small rectangular MLC field</td>
<td>10 cm SAD or SSD</td>
<td></td>
<td>2 cm x 5 cm with MLC</td>
<td>2 Gy</td>
<td>10</td>
</tr>
</tbody>
</table>

(*) The wedge angle most commonly used in your clinical practice.

NOTE: Each of the fields listed in Table 1 is represented graphically in FIG. 4 - 10. The position of the leaves in these Figures is only given for illustration. These positions depend on leaf width and the other technical features of the MLC. MLC positions should be chosen to correspond as closely as possible to the setup procedures required as if being asked to treat a patient with these fields.

For fields from 2 to 7, please provide the [DAN] with a printout copy of the MLC fields given by your Treatment Planning System. If this is not available, please provide a small sketch with the relevant indications of leaf positions and field sizes.
Field 1: Beam Output in Reference Conditions

For the beam output in the reference conditions adjust the field to a 10 cm x 10 cm, see FIG. 4a. Adjust the distance from the source as used in your clinical practice (SAD or SSD), see FIG. 2. Deliver 2 Gy to a TLD placed at 10 cm depth. Label the TLD as TLD #1.

At the end of the irradiation programme with all MLC settings, repeat the irradiation in the reference conditions and deliver 2 Gy to another TLD. Label it as TLD #8.

FIG. 4. Beam output in the reference conditions.

Field 2: Small square MLC field

Deliver 2 Gy to a TLD placed at 10 cm depth in the small square MLC shaped field (FIG. 5); field size 5 cm x 5 cm at the previously set distance from the source (see above). Label it as TLD #2.

FIG. 5. Small MLC field.

Field 3: “Circular” MLC field

Deliver 2 Gy to a TLD placed at 10 cm depth in the ‘circular’ MLC shaped field (FIG. 6); field size 5.6 cm diameter at the previously set distance from the source. Label it as TLD #3.

FIG. 6. ‘Circular’ MLC field.
Field 4: “Inverted Y” MLC field

Deliver 2 Gy to a TLD placed at 10 cm depth in the ‘inverted Y’ MLC shaped field (FIG. 7); maximum field size 15 cm x 10 cm at the previously set distance from the source. Label it as TLD #4.

NOTE: The longitudinal axis of the TLD capsule must be parallel to the longest dimension of the field.

![FIG. 7. ‘Inverted Y’ MLC field.](image)

Field 5: “Irregular” MLC field (open beam)

Deliver 2 Gy to a TLD placed at 10 cm depth in the ‘irregular’ MLC shaped field (FIG. 8); field size 10 cm x 7.5 cm at the previously set distance from the source. Label it as TLD #5.

NOTE: FIGs. 8a and 8b represent possible MLC orientations and not two irradiations. Ensure that the MLC leaves used for field 5 are in the same direction as for field 6.

![FIG. 8. “Irregular” MLC field](image)

Field 6: “Irregular” MLC field with a wedge filter

Deliver 2 Gy to a TLD placed at 10 cm depth in the ‘irregular’ MLC shaped field (FIG. 9); maximum field size 10 cm x 7.5 cm at the previously set distance from the source. Irradiate the TLD in two steps of 1 Gy each, with the wedge rotated 180° between the irradiations as shown in FIG. 9. Label it as TLD #6.

NOTE: The TLD capsule must be placed so that its axis is perpendicular to the slope of the wedge in order to obtain a homogeneous irradiation of the entire volume of TLD powder contained in the capsule. FIGs. 9a and 9b represent possible MLC orientations and not two irradiations.

![FIG. 9. Central axis and TLD position](image)
FIG. 9. 'Irregular’ MLC field with wedge (The leaf and wedge orientation depend on the technical features of the linac).

Field 7: Small rectangular MLC field

Deliver 2 Gy to a TLD placed at 10 cm depth in the small rectangular MLC shaped field (FIG. 10); field size 2 cm x 5 cm at the previously set distance from the source. Label it as TLD #7.

NOTE: The TLD capsule must be placed so that its axis is perpendicular to the direction of leaf movements in order to obtain homogeneous irradiation of the entire volume of TLD powder contained in the capsule.

FIG. 10. Small rectangular MLC field.

D. Absorbed dose measurements with an ionization chamber

Determine experimentally the absorbed dose to water in reference conditions for the radiation beam used for the TLD measurements above according to your usual dosimetry code of practice (dosimetry protocol) and complete the data sheet.
Step 4: TLD quality audits for photon beams shaped with a multileaf collimator (MLC)

It is of great importance for the TLD evaluation that the information requested below be completed. Please complete Part II if additional absorbed dose to water determination was made by ionization chamber measurements.

Individuals responsible:
- **Radiation oncologist:**
 - Name:
 - Position:
- **Medical physicist:**
 - Name:
 - Position:
- **Name of institution:**
- **Address:**
- **Telephone number:**
- **Fax number:**
- **E-mail:**

Form completed by:
- **Name:**
- **Position:**
 - Medical physicist []
 - Radiation oncologist []
 - Technician []
 - Other: ...
- **on the day:**
 - [] [] []
 - Day Month Year

TLD irradiation performed by:
- **Name:**
- **Position:**
 - Medical physicist []
 - Radiation oncologist []
 - Technician []
 - Other: ...

Previous participation in an external audit or intercomparison for this beam
- **No []**
- **Yes []**
 - Date: ...

Please also give information on participation in any other audit: ...
PART I. FOR HOSPITAL STAFF (PHYSICIST, ONCOLOGIST, TECHNICIAN)

I.1 Specifications of the treatment unit

The treatment unit used for this audit is of the type

manufacturer/ model/ serial number/ production year/

installed in the year

The manufacturer’s stated beam energy is

The beam is □ with □ without the flattening filter and is commissioned as □ standard □ SRS □ SRT beam.

The beam quality is characterized by one of the following
□ D20/D10 = (10 cm x 10 cm at SSD = 1 m)
□ TPR 20/10 = (10 cm x 10 cm at a constant source detector distance of cm)
□ other conditions: ...

MLC model:
Number of leaves per leaf bank:
Width of leaf projected at isocentre: ...

I.2 Beam output used for patient treatment planning

Treatment Planning System used is: .. Software version:

The reference absorbed dose to water per monitor unit which is used for treatment planning for patients in daily routine is: Gy/MU.

It refers to a depth of cm in water for a cm x cm field size at:

SSD =cm fixed source surface distance OR fixed source axis distance
SAD =cm (SSD set-up) (isocentric set-up)

I.3 Irradiation of the TLD capsules
(see sections B and C of the instruction sheet)

The TLD capsules were irradiated at:

SSD =cm fixed source surface distance OR fixed source to centre of the TLD
SAD =cm (SSD set-up) distance (isocentric set-up)

NOTE: For fields from 2 to 7, please provide the [DAN] with a printout copy of the MLC fields given by your Treatment Planning System. If this is not available, please provide a small sketch with the relevant indications of leaf positions and field sizes.
1. Beam output in the reference conditions

TLD # 1 and 8 were irradiated using a …….. cm x ……. cm field, with an absorbed dose rate of ………. cGy/MU at the 10 cm irradiation depth.

TLD # 1:
MU = …………………
TPS Dose (Gy) = …………………
Ion Chamber Dose (Gy) = …………………

TLD # 8:
MU =………………
TPS Dose (Gy) =………………
Ion Chamber Dose (Gy) =………………

2. Small square MLC field

TLD # 2 was irradiated using a …….. cm x ……… cm MLC field, with an absorbed dose rate of ………. cGy/MU at the 10 cm irradiation depth.

TLD # 2:
MU = …………………
TPS Dose (Gy) = …………………
Ion Chamber Dose (Gy) = …………………

3. “Circular” MLC field

TLD # 3 was irradiated using a “circular” MLC field with an estimated diameter of ………… cm, with an absorbed dose rate of ………. cGy/MU at the 10 cm irradiation depth.

TLD # 3:
MU = …………………
TPS Dose (Gy) = …………………
Ion Chamber Dose (Gy) = …………………

4. “Inverted Y” MLC field

TLD # 4 was irradiated using an “inverted Y” MLC field of estimated maximum size ……… cm x ……. cm, with an absorbed dose rate of ………. cGy/MU at the 10 cm irradiation depth.

TLD # 4:
MU = …………………
TPS Dose (Gy) = …………………
Ion Chamber Dose (Gy) = …………………
5. “Irregular” MLC open field

TLD # 5 was irradiated using an “irregular” MLC field of the maximum size …… cm x …… cm, with an absorbed dose rate of ……… cGy/MU at the 10 cm irradiation depth.

TLD # 5:
- MU = ……………
- TPS Dose (Gy) = ……………
- Ion Chamber Dose (Gy) = ……………

6. “Irregular” MLC wedged field

TLD # 6 was irradiated using an “irregular” MLC field with wedge filter of maximum size ……… cm x ……… cm, with an absorbed dose rate of ……… cGy/MU at the 10 cm irradiation depth. The wedge type is:

- dynamic/virtual
- internal (motorized)
- physical (manual)

with an angle of ………………. and the wedge transmission factor used is………………..

TLD # 6:
- MU = ……………
- TPS Dose (Gy) = ……………
- Ion Chamber Dose (Gy) = ……………

7. Small rectangular MLC field

TLD # 7 was irradiated using a……… cm x …..…. cm MLC field, with an absorbed dose rate of ……… cGy/MU at the 10 cm irradiation depth.

TLD # 7:
- MU = ……………
- TPS Dose (Gy) = ……………
- Ion Chamber Dose (Gy) = ……………
PART II. ADDITIONAL REQUEST FOR MEDICAL PHYSICISTS

DETERMINATION OF THE ABSORBED DOSE TO WATER BY IONIZATION CHAMBER IN REFERENCE CONDITIONS

Measurements were performed by

/name/ /position/

on the following date: __ __ __ __ __ __ __
day month year

The absorbed dose rate to water in this beam was determined by using a dosimeter system composed of
an ionization chamber__
/manufacturer/ /model/
and an electrometer__
/manufacturer/ /model/

The Co-60 calibration factor of the dosimeter system (ionization chamber together with electrometer) was:

................. R/scale unit (exposure calibration factor Nx)
or Gy/scale unit (air kerma calibration factor Nk)
or Gy/scale unit (absorbed dose to water calibration factor ND,w).

The above stated calibration factor was determined by the following laboratory/manufacturer
__ on the following date ___________ and refers to a temperature
of°C and a pressure [units] of[.......].

The absorbed dose to water in this beam was measured under the following conditions:

water □ other □ please specify material: ____________________________
field size........ cm x cm
distance:
SSD = OR SAD =
(SSD set-up) (Isocentric set-up)

depth of □ the geometrical centre of the ionization chamber in phantom........... cm
□ the P_eff

Please give your measurement results:

Monitor units..MU
Average electrometer reading _____________________________ scale units
Temperature...°C
Pressure [units]..[......]
Electrometer scale...
Polarizing voltage ...

The absorbed dose rate to water in this beam was determined by the following code of practice (dosimetry protocol):

..
..
..
Please give a detailed explanation of your procedure to determine the dose at the position of the centre of the TLD #1 and 8 based on the measurement described above. Please provide all factors you have used:

..
..
..
..
..
..
..
..
..
..
..
..
..
The resulting dose rate in reference conditions is: ..cGy/MU.
STEP 4: TLD quality audits for photon beams shaped with a multileaf collimator (MLC)

Institution:

Address:

Country:

TLD batch No:

TLDs irradiated by:

Date of irradiation:

Evaluation:

RESULTS OF TLD MEASUREMENTS FOR Co-60 AND HIGH-ENERGY PHOTONS

<table>
<thead>
<tr>
<th>Beam</th>
<th>Radiation Unit</th>
<th>Field #</th>
<th>Field Size</th>
<th>TPS dose [Gy]</th>
<th>TLD (measured) dose [Gy]*</th>
<th>TLD dose TPS dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MV</td>
<td>Name of the Radiation Unit</td>
<td>1</td>
<td>10x10</td>
<td>2.000</td>
<td>1.970</td>
<td>0.985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5x5</td>
<td>2.000</td>
<td>1.953</td>
<td>0.977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5.6 Φ</td>
<td>2.000</td>
<td>1.948</td>
<td>0.974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Inv. Y, 10x15</td>
<td>2.000</td>
<td>1.976</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Irre. Open, 7.5x10</td>
<td>2.000</td>
<td>1.990</td>
<td>0.995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Irre. Wedge, 7.5x10</td>
<td>2.000</td>
<td>1.984</td>
<td>0.992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>2x5</td>
<td>2.000</td>
<td>1.993</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>10x10</td>
<td>2.000</td>
<td>2.006</td>
<td>1.003</td>
</tr>
</tbody>
</table>

* The uncertainty in the TLD measurement of the dose is x.x% (1 standard deviation); this does not include the uncertainty intrinsic to the dosimetry protocol (see IAEA TRS-398).

Agreement within ±x% between the user stated dose and the DAN measured dose is considered satisfactory.

IMPORTANT NOTICE: This information is provided only as an independent verification of beam output and not as a machine calibration, nor as an alternative to frequent calibrations by a qualified physicist. **IT DOES NOT CONSTITUTE A STATEMENT WITH REGARD TO THE QUALITY OF RADIOTHERAPY TREATMENTS.**